The missing Greek!

FauxFoundry, our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.

1. Intro

FauxFoundry is our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.

1. Intro

FauxFoundry is our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.

1. Intro

FauxFoundry is our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.

1. Intro

FauxFoundry is our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.

1. Intro

FauxFoundry is our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.

1. Intro

FauxFoundry is our web app, takes Latin fonts as input, scales them to 100%, and then generates synthetic but harmonious Greek fonts. These Greek fonts work via the standard CSS font fallback mechanism.

This proposal addresses a common problem in contemporary web typography, where typographic templates, such as those widely deployed in content management systems (CMS) for the World Wide Web (WWW), specify fonts that lack characters contained in the sets to be displayed using the templates. The character repertoire needed to display all the characters in a CMS, or any content management system, is not always present in user-supplied fonts.

Computer systems typically include “fall-back” mechanisms that ensure a system font is used if the desired font is not available. However, this introduces significant stylistic-incompatibilities. The problem is widespread on the WWW, where non-Latin characters often appear in unharmonious fonts.

The synthetic fonts are static instances of the parametric font (FauxGrec), using parameters supplied by the step that measures a specified Latin font. The resulting synthetic font is harmonious with the specified font, making it less compromised when the user adds the CSS, with the specified font, resulting in much improved typography when the user adds the CSS.