The Chinese Script as a Self-regulating System

Applying Köhler's Basic Model of Synergetic Linguistics to Simplified Chinese Characters

Dr. Cornelia Schindelin

Center of Modern East Asian Studies Chinese as a Foreign Language Göttingen University Faculty 06: Translation, Linguistics and Culture Studies Dept. Of Chinese Mainz University

What's it about?

- Köhler's Basic Model of Synergetic Linguistics
 - * Variables, needs, relationships/dependencies
 - * Direct and indirect dependencies \rightarrow functions
- The Data
- Six Hypotheses
 - Three Hypotheses about direct functional dependencies
 - Three Hypotheses about indirect / mediated functional dependencies
- How did things come out?
- * Any Conclusions?

Köhler's Basic Model of Synergetic Linguistics

- L- : logarithmized variable
- use: need to use a character
- minP: need to minimize producion effort
- Cod: need to encode
- Spc: need for specification
- Red: need for redundancy
- minC: need to minimize coding effort (writer)
- minD: need to minimize decoding effort (reader)
- minl: need to keep inventory size small/limited
- Inventory size: number of characters (types) used in the text corpus
- Number of (component) graphemes: number of different components available to make up the characters
- Graphical complexity: measured in a) strokes; b) components; c) weighted strokes → writing effort
- (Text or Token) Frequency: number of occurrences of each character in the corpus
- Functional complexity: number of different words the character is used in in the corpus

The Data: Source and Corpus

- [Frequency Dictionary of the Modern Chinese Language] Xiandai Hanyu pinlü cidian 现代汉语频 率词典 (Beijing 1986)
- Factual prose (about 40 %), drama, fictional prose and essays as well as fairy-tales
- Corpus size in characters (token total): 1,808,114
- recruited from an inventory of 4,574 character types

Characters and Words

- 217 characters (=4.7 %) only write monosyllabic words
- 1,620 characters (=35.5 %) only write di- or polysyllabic words,
 - * 519 only ever occur at the beginning of words,
 - * 39 exclusively in the "middle" (which is not further specified) of words,
 - * 433 exclusively at the end of words, and
 - * 168 can appear in all three positions.
- 2,737 characters (= 59.8 %) appear in texts as representations of monosyllabic words as well as parts of longer words

Three Hypotheses about Direct Dependencies

- * H 1: The functional complexity of Chinese characters is directly a function of their graphical complexity. (yellow)
- H 2: The text frequency of Chinese characters is a function of their functional complexity. (orange)
- H 3: The graphical complexity of Chinese characters is a function of their text frequency. (green)

Three Hypotheses about Indirect Dependencies

- H 4: The graphical complexity of Chinese characters is indirectly a function of its functional complexity, mediated by frequency. (purple)
- H 5: Functional complexity indirectly is a function of text frequency, mediated by graphical complexity. (blue)
- H 6: The text frequency of characters is indirectly a function of their graphical complexity, mediated by functional complexity. (green)

Direct H 1: The **functional complexity** of Chinese characters is directly a function of their **graphical complexity**.

- 其 qí (pronoun; winnowing basket)
 - 箕 qí (winnowing basket)
 - 來 lái (kind of wheat; Verb: to come)
 - 萊 lái (kind of wheat)

L-functional complexity = In A + B * L-graphical complexity, where B is expected to be negative

Power function: Functional complexity = A * Graphical complexity^B

Direct H 1: The **functional complexity** of Chinese characters is directly a function of their **graphical complexity**.

L-functional complexity = In A + B * L-graphical complexity,

- * where B is expected to be negative
- * Power function: Functional complexity = A * graphical complexity^Ba) Number of strokes:D = 0.956 $A = e^{5.59} = 268.12$ B = -1.373b) Number of graphemes:D = 0.953 $A = e^{3.666} = 39.09$ B = -1.133c) Writing effort:D = 0.95 $A = e^{6.086} = 439.72$ B = -1.44

Direct H 1: The **functional complexity** of Chinese characters is directly a function of their **graphical complexity**.

Direct H 2: The text frequency of Chinese characters is a function of their functional complexity.

- L-frequency = In A + B * L-functional complexity
- Power function:
 Frequency = A * Functional complexity^B

Direct H 2: The text frequency of Chinese characters is a function of their functional complexity.

- L-frequency = In A + B * L-functional complexity
- Power function: Frequency = A * Functional complexity^B

D = 0.958 A = $e^{2.444}$ = 11.52 B = 1,215

Direct H 3: The graphical complexity of Chinese characters is a function of their text frequency.

- L-graphical complexity = In A + B * L-frequency
 - A negative value for B is expected
- Power function: Graphical complexity = A * Frequency^B

Direct H 3: The graphical complexity of Chinese characters is a function of their text frequency.

- L-graphical complexity = In A + B * L-frequency
 - * A negative value for B is expected
- Graphical complexity = A * Frequency^B

Way of measurement		Class width 100	Class width 50
a)	Number of strokes	D = 0.94	D = 0.93
		$A = e^{2.846} = 17.22$	$A = e^{2.72} = 15.18$
		B = - 0.114	B = - 0.094
a)	Number of graphemes	D = 0.95	D = 0.897
		$A = e^{1.51} = 4.53$	$A = e^{1.4} = 4.066$
		B = - 0.0958	B = - 0.078
a)	Writing effort	D = 0.946	D = 0.92
		$A = e^{3.057} = 21.28$	$A = e^{2.94} = 18.88$
		B = - 0.11	B = - 0.09

Direct H 3: The graphical complexity of Chinese characters is a function of their text frequency.

- L-graph. comp. = $\ln X + Y * L$ -funct. comp.
- Power function: Graph. comp. = A * funct. comp.^B

L-graphical complexity = In X + Y * L-functional complexity.

As graphical complexity was measured in three ways and there were two class widths for frequency, we get six theoretical models:

Graphical complexity measured in number of strokes

* L-graphical complexity_{a1} = $2.72 - 0.094 \times (2.444 + 1.215 \times L-functional complexity)$ = $2.49 - 0.114 \times L-functional complexity$

and

- * L-graphical complexity_{a2} = $2.85 0.114 \times (2.444 + 1.215 \times L-functional complexity)$ = $2.57 - 0.138 \times L-functional complexity$
- Graphical complexity measured in number of component graphemes
 - L-graphical complexity_{b1} = 1.4 0.078 * (2.444 + 1.215 * L-functional complexity) = 1.2 - 0.095 * L-Functional complexity

and

- * L-graphical complexity_{b2} = 1.51 0.096 * (2.444 + 1.215 * L-functional complexity)= 1.277 - 0.116 * L-functional complexity
- Graphical complexity measured in writing effort
 - * L-graphical complexity_{c1} = 2.94 0.09 * (2,444 + 1,215 * L- functional complexity)= 2.72 - 0.109 * L-functional complexity

and

* L-graphical complexity_{c2} = 3.06 - 0,109 * (2,444 + 1,215 * L- functional complexity)= 2.79 - 0.13 * L- functional complexity

- The results of regression on the actual data were:
 - a) Number of strokes: D = 0.73 $A = e^{2.55} = 12.82$ B = -0.116
 - b) Number of graphemes: D = 0.60 $A = e^{1.25} = 3.49$ B = -0.092

c) Writing effort: D = 0.75 $A = e^{2.78} = 16.19$ B = -0.114

- Comparison between fitted functions and theoretical functions
- ("funct. comp." = functional complexity)
- Power function: Graphical complexity = A * functional complexity^B

Way of measurement		Theoretical function	Empirical function
a)	Number of strokes	Graph.comp. _{a1} = 12.06 * funct. comp. ^{-0.114}	Graph.comp. _{ae} = $12.82 \times \text{funct. comp.}^{-0.116}$
		Graph.comp. _{a2} = 13.04 * funct. comp. ^{-0.138}	
a)	Number of graphemes	Graph.comp. _{b1} = $3.36 \times \text{funct. comp.}^{-0.095}$	Graph.comp. _{be} = $3.49 \times \text{funct. comp.}^{-0.092}$
		Graph.comp. _{b2} = $3.59 \times \text{funct. comp.}^{-0.116}$	
a)	Writing effort	Graph.comp. _{c1} = $15.16 \times \text{funct.comp.}^{-0.109}$	Graph.comp. _{ce} = $16.19 \times \text{funct. comp.}^{-0.114}$
		Graph.comp. _{c2} = $16.3 \times \text{funct. comp.}^{-0.13}$	

- L-functional complexity = In X + Y * L-frequency
- Power function:

Funct. Comp. = $A * Frequency^{B}$

- L-functional complexity = In X + Y * L-frequency
- L-functional complexity_{a1} = 5.59 1.373 * (2.85 0.114 * L-frequency)= 1.68 + 0.156 * L-frequency and L-functional complexity_{a2} = 5.59 - 1.373 * (2.72 - 0.094 * L-frequency)= 1.85 + 0.13 * L-frequency L-functional complexity_{b1} = 3.666 - 1.133 * (1.51 - 0.096 * L-frequency) = 1.95 + 0.108 * L-frequency and L-functional complexity_{b2} = 3.666 - 1.133 * (1.4 - 0.078 * L-frequency)= 2.076 + 0.088 * L-frequency L-functional complexity_{c1} = 6.086 - 1.441 * (3.06 - 0.109 * L-frequency) = 1.68 + 0.157 * L-frequency and L-functional complexity_{c2} = $6.086 - 1.441 \times (2.94 - 0.09 \times L-frequency)$ = 1.85 + 0.13 * L-frequency

Power function: Funct. Comp. = $A * Frequency^{B}$ * **Regression results:** * * Class width 100: D = 0.969 A = e^{-1.649} = 0.192 B = 0.804* Class width 50: D = 0.97 $A = e^{-1.173} = 0.31$ B = 0.74120 100 Functional complexity 80 Data points **Fitted function** 2000 3000 Text frequency, class width 100 100 Functional complexity 8 (60 40 Data points Fitted function 1800 2000 Text frequency, class width 50

Comparison between fitted functions and theoretical functions

Class width	Theoretical functions	Empirical function
100	funct. comp. _{a1} = 5.37 * freq. ^{0.156}	funct. comp. _{e1} = 0.192 * freq. ^{0.804}
	funct. comp. _{b1} = 7.05 * freq. ^{0.108}	
	funct. comp. _{c1} = 5.36 * freq. ^{0.157}	
50	funct. comp. _{a2} = $6.36 * \text{ freq}.^{0.13}$	funct. comp. _{e2} = 0.31 * freq. $^{0.74}$
	funct. comp. _{b2} = 7.98 * freq. ^{0.088}	
	funct. comp. _{c2} = 6.36 * freq. ^{0.13}	

- L-frequency = In X + Y * L-graphical complexity
- Power function:

Frequency = A * Graphical complexity^B

- Power function: Frequency = A * Graphical complexity^B

Regression results:

a) Number of strokes D = 0.93
b) Number of graphemes D = 0.955
c) Writing effort D = 0.88

 $A = e^{11.077} = 64.690.26$ B = -2.466 $A = e^{7.63} = 2.058.5$ B = -1.98 $A = e^{11.675} = 117,557.75$ B = -2.47

Comparison between fitted functions and theoretical functions

	Theoretically	Empirically
a)	Freq _a = 10,287.14 * Komp ^{-1.67}	Freq _{ea} = 64,690.26 * Komp ^{-2.466}
b)	Freq _b = 992.27 * Komp ^{-1.377}	Freq _{eb} = 2,058.5 * Komp ^{-1.98}
c)	Freq _c = 18,797.89 * Komp ^{-1.75}	Freq _{ec} = 117,557.75* Komp ^{-2.47}

Any Conclusions?

- * Three direct hypotheses:
 - * Regression very good, can be accepted
- Three indirect hypotheses:
 - Only H 6 withstood testing
 - * H4 and H 5 could not be validated on the data, seem to show systematic deviation. Factor involved that has not been considered, yet?
 - * Step in right direction?
- Overall, relationships not very different than in the model for vocabularies.

Thank you for listening! 谢谢,请多关照!

Literature

Altmann, G. (2004). "Script Complexity". In: Glottometrics 8. 68–74.

Altmann, G., and Köhler, R. (1996). "Language Forces? and Synergetic Modelling of Language Phenomena". In: P. Schmidt [ed.]: Glottometrika 15. Issues in General Linguistic Theory and the Theory of Word Length. WVT. Trier. 62-76.

Best, Karl-Heinz/Zhu, Jinyang (2001). "Wortlängenverteilungen in chinesischen Texten und Wörterbüchern". In: Karl-Heinz Best (ed.). Häufigkeitsverteilungen in Texten. Göttingen: Peust & Gutschmitdt. 101-114.

Breiter, Maria A. (1994). "Length of Chinese words in relation to their other systemic features". In: Journal of quantitative linguistics 1(3). 224-231.

Bohn, H. (1998). Quantitative Untersuchungen der modernen chinesischen Sprache und Schrift [Quantitative studies of modern Chinese language and script]. Hamburg: Verlag Dr. Kovač.

[Frequency Dictionary of the modern Chinese Language] Xiandai Hanyu pinlü cidian 现代汉语频率词典 (1986). Beijing: Yuyan Xueyuan chubanshe.

Grotjahn, R. (1992). "Evaluating the adequacy of regression models: Some potential pitfalls". In: B. Rieger (ed.). Glottometrika 13 (S. 121-172). Bochum: Brockmeyer.

Hammerl, R. (1991). Untersuchungen zur Struktur der Lexik: Aufbau eines lexikalischen Basismodells [Studies on the structure of the lexicon: Construction of a lexical basic model]. Trier: Wissenschaftlicher Verlag Trier.

Köhler, Reinhard (1986). Zur linguistischen Synergetik. Struktur und Dynamik der Lexik [On synergetic linguistics. Structure and dynamics of the lexicon]. Bochum: Brockmeyer. Köhler, Reinhard (1990). "Elemente der synergetischen Linguistik" [Elements of synergetic linguistics]. In: Glottometrika 12: 179-188.

Köhler, Reinhard (2005). "Synergetic Linguistics". In: Reinhard Köhler. Gabriel Altmann & Rajmund G. Piotrowski (eds.). Quantitative Linguistics. An International Handbook. Berlin. New York: Walter de Gruyter. 760-775.

Köhler, R., and S. Naumann (2005). "An extension of the synergetic-linguistic model and its application to word frequency". In: P. Grzybek (ed.) Proceedings of the Workshop The Science of Language: Structures of Frequencies and Relations at Graz University.

Le, Quan Ha/Sicilia-Garcia, E. I./Ji, Ming/Smith, F.J. (2002). "Extension of Zipf's law to words and phrases". In: Proceedings of the 19th international conference on computational linguistics (COLING-2002). Taibei, (no pages given).

Le, Quan Ha/Sicilia-Garcia, E. I./Ji, Ming/Smith, F.J. (2003): "Extension of Zipf's law to word and character n-grams for English and Chinese". In: Computational linguistics and Chinese language processing 8(1). 77-102.

Menzel, Cornelia (2004): "Das synergetische Basismodell der Lexik und die chinesische Schrift" [The synergetic basic model of lexics and the Chinese script]. In: Reinhard Köhler (ed.). Korpuslinguistische Untersuchungen zur quantitativen und system theoretischen Linguistik [Corpus studies for quantitative and systems theoretic linguistics]. 178-205. Trier. online. URN: https://nbn-resolving.org/urn:nbn:de:hbz:385-1-1469.

Rousseau, R[onald]., and Zhang, Qiaoqiao (1992): "Zipf's data on the frequency of Chinese words revisited". In: Scientometrics 24(2). 201-220.

Schindelin, Cornelia (2005). "Die quantitative Erforschung der chinesischen Sprache und Schrift" [Quantitative research on the Chinese language and script]. In: Quantitative Linguistics. An International Handbook. Edited by Reinhard Köhler. Gabriel Altmann. Rajmund G. Piotrowski. Berlin. New York: Walter de Gruyter. 947-970.

Schindelin, Cornelia (2017). "Character Frequency". In: Encyclopedia of Chinese Language and Linguistics. Vol. 1. Ed. by Rint Sybesma et al. Leiden: Brill. 358-362.

Schindelin, Cornelia (2017). "Menzerath's Law". In: Encyclopedia of Chinese Language and Linguistics. Vol. 3. Ed. by Rint Sybesma et al. Leiden: Brill. 1-3.

Schindelin, Cornelia (2017). "Word Frequency". In: Encyclopedia of Chinese Language and Linguistics. Vol. 4. Ed. by Rint Sybesma et al. Leiden: Brill. 580-584.

Schindelin, Cornelia (2017). "Word Length". In: Encyclopedia of Chinese Language and Linguistics. Vol. 4. Ed. by Rint Sybesma et al. Leiden: Brill. 584-589.

Schindelin, Cornelia (2017). "Zipf's Law". In: Encyclopedia of Chinese Language and Linguistics. Vol. 4. Ed. by Rint Sybesma et al. Leiden: Brill. 723-724.

Wang, L. (2011). "Polysemy and Word Length in Chinese". In: Glottometrics. 22. 73-84.

Wang, L. (2014). "Synergetic Studies on Some Properties of Lexical Structures in Chinese". In: Journal of Quantitative Linguistics. 21(2). 177–197.

Wang, Yanru, and Xinying Chen (2015). "Structural Complexity of Simplified Chinese Characters". In: Tuzzi. Arjuna. Martina Benešová. and Ján Mačutek (eds.). Recent Contributions to Quantitative Linguistics. Berlin: de Gruyter Mouton. 229-240.

Zhu, Jinyang, and Best, Karl-Heinz (1997). ",Zur Modellierung der Wortlängen im Chinesischen" [On modelling word length in Chinese]. In: Glottometrika 16. Trier: Wissenschaftl. Verlag Trier. 185-194.

Zhu, Jinyang, and Best, Karl-Heinz (1998). "Wortlängenhäufigkeiten in chinesischen Kurzgeschichten" [Word length frequencies in Chinese short stories]. In: Asian and African Studies 7 (Bratislava). 45-51.

Zipf, George Kingsley (1932). Selected studies of the principle of relative frequency in language. Cambridge, Mass.: Harvard University Press.